\qquad
\qquad

Section 4.1 Extra Practice

1. How many x-intercepts does the graph of each quadratic function have?
a)

b)

c)

d)

2. What are the roots of the quadratic equations graphed in \#1?
3. Solve by graphing.
a) $0=-a^{2}-3 a-4$
b) $12=-3 b^{2}-12 b$
c) $6 c^{2}+30 c=0$
d) $d^{2}-4=0$
4. Determine the roots for each quadratic equation. Where integral roots cannot be found, estimate the roots to the nearest tenth.
a) $0=x^{2}+2.4 x-3.85$
b) $z^{2}-15=0$
c) $t^{2}+t=-1$
d) $0=-u^{2}-u+5$
5. Solve by graphing.
a) $t^{2}-5 t-150=0$
b) $h^{2}-400=0$
c) $0=x^{2}+0.6 x-0.05$
d) $5 y^{2}+3 y+100=0$
\qquad
\qquad
6. For what values of m would the equation $x^{2}+8 x+m=0$ have
a) one real root or two equal real roots?
b) two real distinct roots?
c) no real roots?
7. An object is launched at $21.5 \mathrm{~m} / \mathrm{s}$ from a height of 2.4 m . The equation for the object's height, h, measured in metres, t seconds after launch is $h=-4.9 t^{2}+21.5 t+2.4$. After how many seconds will the object hit the ground? Express your answer to the nearest tenth of a second.
8. A right triangle has one side that is 7 cm longer than its shortest side. The triangle's hypotenuse is 8 cm longer than the shortest side. What are the dimensions of the triangle?
